Latihan pts

Nama : Mila dwi andini (26)

Kelas : XI IPS 3

senin, 5 september 2020


1. Jika masyarakat membuang sampah pada tempatnya maka hidup akan nyaman. 

2. 1 + 3 + 5 + 7 + ... + (2n – 1) = n²

Langkah pertama  

Akan dibuktikan untuk n = 1 Benar

(2n – 1) = n²

2(1) – 1 = 1²

2 – 1 = 1

1 = 1 (benar)

Langkah kedua

Misal untuk n = k benar

1 + 3 + 5 + 7 + ... + (2k – 1) = k²

Akan dibuktikan untuk n = (k + 1) juga benar

1 + 3 + 5 + 7 + .... + (2k – 1) + (2(k + 1) – 1) = (k + 1)²

|__________________|  

                     k²                  + (2(k + 1) – 1) = (k + 1)²

                                         k² + 2k + 2 – 1 = (k + 1)²

                                               k² + 2k + 1 = (k + 1)²

                                                     (k + 1)² = (k + 1)²

                                                          (Benar)

Jadi TERBUKTI bahwa 1 + 3 + 5 + 7 + ... + (2n – 1) = n² berlaku untuk setiap n bilangan asli


3. 










4. 
5. 


6.

1) buktikan kebenaran untuk 

(Benar)

2) asumsikan benar untuk 

 , 

 menunjukkan bahwa  merupakan kelipatan 9)

3) cek kebenaran untuk 

akan terbukti benar jika  habis dibagi 9

bisa buktikan itu dengan induksi lagi

buktikan bahwa  habis dibagi 9

1) cek kebenaran untuk 

(benar)

2) asumsikan benar untuk 

3) cek kebenaran untuk 

terbukti bahwa  habis dibagi 9 benar

maka pernyataan awal tadi juga benar


7. Penjelasan dengan langkah-langkah:

n_>5={1,2,3,4,5}

2n-3<2n-2

=2(1)-3<2(1)-2

=(-1)<0(benar)

2(2) -3<2(2) -2

=1<2 (benar)

2(3) -3<2(3) -2

=3<4(benar)

2(4) -3<2(4) -2

=5<6( benar)

2(5) -3<2(5) -2

=7<8( benar)


8. itu adalah persamaan linier dua variabel

akann kita gunakan cara eliminasi (menghilangkan dulu) salah satu variabel, kita coba hilangkan x-nya dulu yaa..
persamaan x+2y=4 kita kalikan dengan 2, maka menjadi
2x+4y = 8  -------> (persamaan 1)
2x-3y = -13 ------> (persamaan 2)
--------------- -  (dikurangi)
     7y = 21
y = 21/7
y = 3
nilai y = 3 kita masukkan kdlam salah satu persamaan di atas, misalkan pada
persamaan x+2y = 4,
x+2.3 = 4
x+6 = 4
x = 4-6
x = -2
jadi penyelesainnya adlh x= -2 dan y = 3

9. gula = x
beras = y
5x + 30y = 410.000 |*2
2x + 60y = 740.000 |*1

10x + 60y = 820.000
2x + 60y = 740.000 
_________________-

8x = 80.000
x = 10.000

subtitusikan x nya ke persamaan
 2x + 60y = 740.000
2(10.000) + 60y = 740.000
20.000 + 60y = 740.000
60y = 720.000
y = 12.000

jadi, harga 1kg gula = Rp 10.000 dan 1kg beras = Rp 12.000
maka 2kg gula dan 5kg beras
= 2(10.000) + 5(12.000)
= 20.000 + 60.000
= Rp 80.000

10. Untuk x = 0

5x + 3y = 15

5 (0) + 3y = 15

          3y = 15

            y = 

            y = 5 titik (0, 5)

Untuk y = 0

5x + 3y = 15

5x + 3 (0) = 15

          5x = 15

            x = 

            x = 3 titik (3, 0)

Jadi garis 5x + 3y = 15 melalui titik (0, 5) dan (3, 0)


11. Penjelasan dengan langkah-langkah:

2x-5y>20

titik potong di y

x=0

2(0)-5y>20

-5y>20

y<20/-5

y<-4

Hp { 0,-4}


titik potong di x

y=0

2x-5(0)>20

2x>20

x>20/2

x>10

Hp {10,0}

Hp{ 10,0 ; 0.-4}



12. 

13. 


14. 
Jadi, nilai maksimum dicapai pada titik (5,0) yaitu: 3 . 5 + 2 . 0 = 15.


15. Luas sebuah tempat parkir adalah 420 m2. Tempat parkir yg diperlukan oleh sebuah sedan adalah 5 m2 dan luas rata-rata truk 15 m 2. tempat parkir tersebut menampung tidak lebih dri 60 kendaraan. biaya parkir untuk sebuah sedan Rp.3000 dan truk Rp 5000. jika sedan yang diparkir x buah dan truk yang diparkir y buah. model matematika dri masalah tsb adalah..
x + 3y < 84 ; x+y < 60 ; x > 0 ; y > 0

16. (1) Kita Buat Tabel Untuk memudahkan:

Model   ||    Polos  ||  Garis  ||  Harga

   I         ||       1       ||     3      ||  150.000

  II         ||       2      ||      1      ||  100.000

Stok      ||       20    ||      20   ||   maksimum

(2) Kita buat kalimat matematika dari Tabel diatas Dengan kain polos sebagai (x) dan kain bergaris sebagai (y) :

x + 2y ≤ 20

3x + y ≤ 20

dengan :

x ≥ 0

y ≥ 0

Dan Fungsi Tujuan adalah harga jual :

150.000x + 100.000y

(3) Tentukan nilai fungsi x dan y pada grafik fungsi :

Dari x + 2y = 20 :

x = 0, y ⇒ 0 + 2y = 20

            ⇒       2y = 20

            ⇒          y = 20/2

            ⇒          y = 10

Titik Koordinat ⇒ (0,10)

y = 0, x ⇒ x + 2y = 20

            ⇒ x  + 0  = 20

            ⇒         x  = 20

Titik Koordinat ⇒(20,0)

Dari 3x + y = 20

x = 0 , y ⇒ 3x + y = 20

             ⇒ 0   + y = 20

Titik Koordinat ⇒ (0,20)

y = 0, x ⇒ 3x + y = 20

            ⇒ 3x + 0 = 20

            ⇒ 3x        = 20

            ⇒   x        = 20/3

Titik Koordinat ⇒ (20/3,0)

Dari Titik - titik tersebut tarik garis lurus hingga terhubung.

Lalu kita cari titik potong dari garis tersebut, dengan metode eliminasi dan subtitusi :

Eliminasi y :

x + 2y = 20  | x 1  |   x + 2y = 20

3x + y = 20  | x 2 | 6x + 2y = 40

                            ============  -

                             -5x          = -20

                                x           = 20/5

                                x           = 4

Subtitusikan nilai x pada persamaan 3x + y = 20 :

3 . 4 + y = 20

12 + y = 20

       y = 20 - 12

       y = 8

Koordinat titik potong garis pada (4,8)

(4) Selanjutnya Dari Titik - titik yang berpotongan kita uji dengan :

Fungsi Tujuan f(x,y) = 150.000x + 100.000y :

Ada 3 titik pada Grafik (perhatikan lampiran)

A. Titik (0,10) = 150.000 . (0) + 100.000 . (10) =

                      = 0 + 1.000.000 = 1.000.000

B. Titik (4,8) = 150.000 . (4) + 100.000 . (8) =

                      = 600.000 + 800.000 = 1.400.000

C. Titik (20/3,0) = 150.000 . (20/3) + 100.000 . (0) =

                        = 1.000.000 + 0 = 1.000.000

Dari Hasil Uji diatas dapat dilihat, penghasilan terbesar pada titik (4,8) yaitu sebesar Rp.1.400.000,00

JADI PENGHASILAN MAKSIMUM YANG DAPAT DI PEROLEH ADALAH Rp.1.400.000,00


17. Diketahui matriks A = ( 2 3 -1 4 ) dan matriks B = ( 1 4 -2 5 ). Jika matriks C = 2A^t - B maka determinan dari matriks C adalah....

Jika diketahui matriks   ,  , dan  ,maka determinan dari matriks C adalah 57.

Pembahasan

Matriks adalah susunan beberapa bilangan dalam bentuk persegi panjang yang diatur menurut baris dan kolom.

Ordo matriks adalah ukuran dari suatu matriks yang ditentukan oleh banyaknya baris dan kolom dari suatu matriks. Misalkan matriks A mempunyai m baris dan n kolom, maka ordo matriks A adalah m x n.

Transpos matriks adalah mengubah baris matriks A menjadi kolom matriks sehingga matriks A dengan ordo m x n akan menjadi matriks transpos A' dengan ordo n x m.

Determinan matriks A dilambangkan dengan det A atau |A|.  Untuk menentukan determinan matriks dapat digunakan sebagai berikut.

1. Matriks berordo 2 x 2

  Jika matriks  , maka

  det A = |A| =  

2.  Matriks berordo 3 x 3

    Jika matriks

    , maka

    determinan A dapat ditentukan dengan menggunakan aturan Sarrus:

    

         = a₁₁ a₂₂ a₃₃ + a₁₂ a₂₃ a₃₁ + a₁₃ a₂₁ a₃₂ - a₁₃ a₂₂ a₃₁ - a₁₁ a₂₃ a₃₂ - a₁₂ a₂₁ a₃₃



Penyelesaian

diket:

        

ditanya:

det C...?

jawab:

- mencari transpos matrisk A

   ⇒ 

- mencari matriks C

 

     

     

- mencari det C

 det C = (3)(3) - (-6)(8)

          = 9 + 48

det C = 57


18. Matriks At adalah transpose matriks A. Jika matriks C = (4/7 -1/7 -1/7 2/7) B = (4 2 2 8) dan A = C-1 maka determinan dari matriks At.B adalah.. 196



19. Jika matriks A =  tidak mempunyai invers, maka nilai x adalah 1. Matriks adalah kumpulan dari angka angka yang disusun dalam baris dan kolom. Operasi hitung perkalian matriks syaratnya adalah kolom matriks pertama harus sama dengan baris matriks kedua.  Matriks A berordo (m × n) bisa dikalikan dengan matriks B berordo (n × p) maka hasil perkaliannya adalah matris C yang berordo (m × p). Suatu matriks memiliki invers jika determinan matriksnya tidak sama dengan nol. Rumus invers matriks adalah:
  • A⁻¹ =  × Adjoin A

Misal A = , maka

  • Determinan A = |A| = ad – bc
  • Invers matriks A = A⁻¹ = 

Pembahasan

Diketahui

A = 

Matriks A tidak mempunyai invers

Ditanyakan  

x = .... ?

Jawab

Suatu matriks tidak mempunyai invers jika determinan matriks tersebut sama dengan nol

Jadi

|A| = 0

(2x + 1)(5) – 3(6x – 1) = 0

10x + 5 – 18x + 3 = 0

8 – 8x = 0

8 = 8x

x = 

x = 1


20. 


21. 1,7 atau 0,6

22. Suatu perusahaan pakaian, JCloth, memiliki dua pabrik yang terletak di Surabaya dan Malang. Di dua pabrik tersebut, JCloth memproduksi dua jenis pakaian, yaitu kaos dan jaket. Perusahaan tersebut memproduksi pakaian yang kualitasnya dapat dibedakan menjadi tiga jenis, yaitu standard, deluxe, dan premium. Tahun kemarin, pabrik di Surabaya dapat memproduksi kaos sebanyak 3.820 kualitas standard, 2.460 kualitas deluxe, dan 1.540 kualitas premium, serta jaket sebanyak 1.960 kualitas standard, 1.240 kualitas deluxe, dan 920 kualitas premium. Sedangkan pabrik yang terletak di Malang dapat memproduksi kaos sebanyak 4.220 kualitas standard, 2.960 kualitas deluxe, dan 1.640 kualitas premium, serta jaket sebanyak 2.960 kualitas standard, 3.240 kualitas deluxe, dan 820 kualitas premium dalam periode yang sama.

Untuk menentukan banyaknya total pakaian yang diproduksi oleh JCloth, kita jumlahkan matriks S’ dengan M’ seperti berikut.
  1. 1-4 Matriks
    Dari penjumlahan matriks di atas, kita memperoleh informasi banyaknya pakaian yang akan diproduksi oleh JCloth. Dengan menjumlahkan semua elemen-elemen matriks penjumlahan tersebut, kita peroleh bahwa banyaknya pakaian yang akan diproduksi oleh JCloth kurang lebih 28.142.
23. x = pensil
y = penghapus

5x + 3 y = 11.500 (x2)
4x + 2 y = 9.000 (x3)
_______________
10x + 6 y = 23.000
12x + 6y = 27.000
_______________ (-)
-2x = -4.000
x = 2.000

4x + 2y = 9.000
4*2000 + 2y = 9000
2y = 1000
y = 500

jadi harga pensil = 2000 dan penghapus = 500
sehingga doni harus membayar 6*2000 + 5*500 = 12.000+2.500 = 14.500

24. 

Hitung pemasukan Bu Ani dari setiap kantin dengan cara perkalian matriks

Perkalian Matriks A dan Matriks B

AB = 

AB = 

Kantin A: Rp. 55.000,00

Kantin B: Rp. 93.000,00

Kantin C: Rp. 100.000,00


25. a. Nyatakan banyaknya makanan yang disetorkan setiap harinya dengan matriks

Banyaknya makanan disetorkan = A

A = 

b. Nyatakan harga makanan dalam bentuk matriks

Harga makanan = B

B = 

c. Hitung pemasukan Bu Ani dari setiap kantin dengan cara perkalian matriks

Perkalian Matriks A dan Matriks B

AB = 

AB = 

Kantin A: Rp. 55.000,00

Kantin B: Rp. 93.000,00

Kantin C: Rp. 100.000,00

d. Carilah determinan matriks dari banyaknya makanan yang disetorkan setiap harinya

|A| = (10 X 15 X 10) + (10 X 8 X 15) + (5 X 20 X 20) - (5 X 15 X 15) - (10 X  20 X 8) - (10 X 8 X 20)

|A| = -100 - 800 + 875

|A| = -15


25. x + y = 16

3x + 4y = 55

Jika ditulis dalam bentuk matriks:





Jadi, Lisa bekerja selama 9 jam sedangkan Muri bekerja selama 7 jam.







Komentar

Postingan populer dari blog ini

SOAL CERITA DENGAN PENYELESAIANNYA GUNAKAN INVERS DAN DETERMINAN MATRIKS

PERTUMBUHAN, BUNGA TUNGGAL, BUNGA MAJEMUK, BUNGA ANUITAS, PELURUH DAN BEBERAPA CONTOH SOAL

TRANSFORMASI TRANSLASI, REFLEKSI, ROTASI, DILATASI, DENGAN MATRIKS